Asymptotic Integration and Dispersion for Hyperbolic Equations, with Applications to Kirchhoff Equations
نویسندگان
چکیده
The aim of this paper is to establish time decay properties and dispersive estimates for strictly hyperbolic equations with homogeneous symbols and with time-dependent coefficients whose derivatives belong to L(R). For this purpose, the method of asymptotic integration is developed for such equations and representation formulae for solutions are obtained. These formulae are analysed further to obtain time decay of L–L norms of propagators for the corresponding Cauchy problems. It turns out that the decay rates can be expressed in terms of certain geometric indices of the limiting equation and we carry out the thorough analysis of this relation. This provides a comprehensive view on asymptotic properties of solutions to time-perturbations of hyperbolic equations with constant coefficients. The formulae are then applied to the global solvability of Kirchhoff equations of higher order with small data. Moreover, we also obtain the time decay rate of the L–L estimates for nonlinear equations of these kinds, so the time well-posedness of the corresponding equations with additional semilinearity can be treated by standard Strichartz estimates.
منابع مشابه
Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملDispersion and Asymptotic Profiles for Kirchhoff Equations
The aim of this article is to describe asymptotic profiles for the Kirchhoff equation, and to establish time decay properties and dispersive estimates for Kirchhoff equations. For this purpose, the method of asymptotic integration is developed for the corresponding linear equations and representation formulae for their solutions are obtained. These formulae are analysed further to obtain the ti...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملGlobal existence, stability results and compact invariant sets for a quasilinear nonlocal wave equation on $mathbb{R}^{N}$
We discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of Kirchhoff Type [ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+delta u_{t}=|u|^{a}u,, x in mathbb{R}^{N} ,,tgeq 0;,]with initial conditions $u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; delta geq 0$ and $(phi (x))^{-1} =g (x)$ is a positive function lying in $L^{N/2}(mathb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008